Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Rev Med Devices ; 21(4): 335-347, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557297

ABSTRACT

BACKGROUND: Regulation has a key role for medical devices throughout their lifecycle aiming to guarantee effectiveness and safety for users. Requirements of Regulation (EU) 2017/745 (MDR) have an impact on novel and previously approved systems. Identification of key stakeholders' needs can support effective implementation of MDR improving the translation to clinical practice of vascular ageing assessment. The aim of this work is to explore knowledge and perception of medical device regulatory framework in vascular ageing field. RESEARCH DESIGN AND METHODS: A survey was developed within VascAgeNet and distributed in the community by means of the EUSurvey platform. RESULTS: Results were derived from 94 participants (27% clinicians, 62% researchers, 11% companies) and evidenced mostly a fair knowledge of MDR (despite self-judged as poor by 51%). Safety (83%), validation (56%), risk management (50%) were considered relevant and associated with the regulatory process. Structured support and regulatory procedures connected with medical devices in daily practice at the institutional level are lacking (only 33% report availability of a regulatory department). CONCLUSIONS: Regulation was recognized relevant by the VascAgeNet community and specific support and training in medical device regulatory science was considered important. A direct link with the regulatory sector is not yet easily available.

2.
J Knee Surg ; 34(9): 1014-1025, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32074653

ABSTRACT

The aim of this study was to analyze the extent to which postoperative patellofemoral joint (PFJ) kinematics assessed at 6-month follow-up after total knee arthroplasty (TKA) mimics the intraoperative kinematics after final component implantation. The study hypothesis, already proved in terms of tibiofemoral joint (TFJ) kinematics, is that the intraoperative assessment of PFJ kinematics after component implantation is also capable of predicting postoperative knee kinematics during activities of daily living. Twenty patients selected for TKA with patellar resurfacing were implanted using surgical navigation, including patellar component positioning via a novel computer-assisted procedure. This allowed for intraoperative TFJ and PFJ kinematic assessment after final component implantation. At 6-month follow-up, all patients were contacted for follow-up control; in addition to clinical examination, this implied postoperative kinematics assessments by three-dimensional video fluoroscopy of the replaced knee during standard activities of daily living. Several traditional PFJ, as well as TFJ, rotations and translations were calculated intra- and postoperatively and then statistically compared. Good postoperative replication of the intraoperative measurements was observed for most of PFJ variables analyzed, as well as those for TFJ. Relevant statistical analysis also supported the significant consistency between the intra- and postoperative measurements. Pertaining to the present findings on a statistical basis, intraoperative measurements performed at both TFJ and PFJ kinematics using a surgical navigation system under passive conditions, are predictive of the overall knee kinematics experienced at postoperative follow-ups by the same replaced knees in typical activities of daily living.


Subject(s)
Arthroplasty, Replacement, Knee , Patellofemoral Joint , Activities of Daily Living , Biomechanical Phenomena , Humans , Knee Joint/diagnostic imaging , Knee Joint/surgery , Patellofemoral Joint/diagnostic imaging , Patellofemoral Joint/surgery , Range of Motion, Articular
3.
Clin Biomech (Bristol, Avon) ; 69: 168-177, 2019 10.
Article in English | MEDLINE | ID: mdl-31369961

ABSTRACT

BACKGROUND: In total knee arthroplasty with patellar resurfacing, patellar bone preparation, component positioning and motion assessments are still not navigated. Only femoral/tibial component positioning is supported by computer-assistance. The aim of this study was to verify, in-vivo, whether knee surgical navigation extended to patellar resurfacing, by original instrumentation and procedures for patellar-based tracking, could achieve accurate patella preparation in terms of original thickness restoration, bone cut orientation, and normal knee motion. METHODS: An additional navigation system for patellar data acquisition was used together with a standard navigation system for total knee arthroplasty in 20 patients. This supported the surgeon for patellar resurfacing via measurement of removed bone thickness, three-dimensional patellar cut orientations, and patello-femoral motion. Radiological and clinical examinations at 6 and 24-month follow-up were also performed. FINDINGS: The medio-lateral patellar-bone cut orientation was respectively 0.5° (standard deviation: 3.0°) and 1.4° (1.7°) lateral tilt, as measured via navigation and post-operatively on the Merchant x-ray view. The cranio-caudal orientation was 3.8° (7.2°) of flexion. The thickness variation between patellar pre- and post-implantation was 0.2 (1.3) mm. Immediately after implantation, patello-femoral as well as tibio-femoral kinematics was within the normality. Good radiological and clinical examinations at 6 and 24-month follow-up were also observed. INTERPRETATION: For the first time, the effect of patellar navigation for its resurfacing was assessed in-vivo during surgery, with very good results for thickness restoration, proper cut orientation, and normal knee motion. These results support the introduction of patella-related navigation-based surgical procedures for computer-assisted total knee arthroplasty.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Joint/surgery , Knee Prosthesis , Patella/surgery , Aged , Biomechanical Phenomena , Female , Femur/surgery , Humans , Male , Middle Aged , Osteoarthritis/surgery , Range of Motion, Articular , Tibia/surgery , Treatment Outcome
4.
J Orthop Res ; 32(2): 331-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24174168

ABSTRACT

Patient-specific instrumentation systems are entering into clinical practice in total knee replacement, but validation tests have yet to determine the accuracy of replicating computer-based plans during surgery. We performed a fluoroscopic analysis to assess the final implant location with respect to the corresponding preoperative plan. Forty-four patients were analyzed after using a patient-specific system based on CT and MRI. Computer aided design implant models and models of the femur and tibia bone portions, as for the preoperative plans, were provided by the manufacturers. Two orthogonal fluoroscopic images of each knee were taken after surgery for pseudo-biplane imaging; 3D component locations with respect to the corresponding bones were estimated by a shape-matching technique. Assuming that the corresponding values at the preoperative plan were equal to zero, discrepancies were taken as an indication of accuracy for the systems. A repeatability test revealed that the technique was reliable within 1 mm and 1°. The maximum discrepancies for all the patients for the femoral component were 5.9 mm in a proximo-distal direction and 4.2° in flexion. Good matching was found between final implantations and preoperative plans with mean discrepancies smaller than 3.1 mm and 1.9°.


Subject(s)
Arthroplasty, Replacement, Knee/instrumentation , Knee Joint/diagnostic imaging , Surgery, Computer-Assisted/methods , Femur/surgery , Fluoroscopy , Humans , Knee Prosthesis , Magnetic Resonance Imaging , Reproducibility of Results , Tibia/surgery , Tomography, X-Ray Computed , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...